

Smart Moves

Mit Automatisierung flexibel in die Zukunft

@HaiRobotics @BostonDynamics

09.10.2025, Düsseldorf

Kundenzentrierte Logistik

Leistung Excellenz Schnelle Auftragskonsolidierung

Wettbewerbsfähige Kosten

Genauigkeit

- Kunden-Präferenzen für
 - Liefertermine/-optionen
 - Value-Added-Services

Durchlaufzeit

Kundennähe

Schnelle Bearbeitung

Herausforderungen für automatisierte Logistik-Setups

Kundennähe

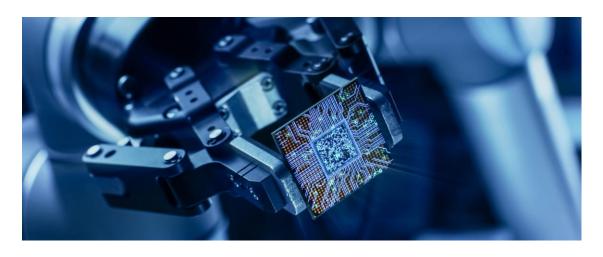
Steigende Investitionen & ROIs von 5-10 Jahren

Technologiesprünge in 3-5 Jahren

Designprinzipien für einen nachhaltigen Produktsupport

Skalierbarkeit

Ressourcen-Autonomie


"No regret moves"

Technologiesprünge bis zur vollständigen Automatisierung

FORTGESCHRITTENE ROBOTERTECHNIK

Eine neue Welle flexibler, erweiterbarer und schneller implementierbarer Technologien verlagern die Komplexität von der Hardware zu Software und Rechenleistung. Technologiefortschritte ermöglichen die Automatisierung von zuvor schwer handhabbaren Prozessen.

ENTKOPPLUNG STATISCHER UND DYNAMISCHER KAPAZITÄT

Modulare, roboterbasierte ASRS-Systeme mit großvolumigem Flottenmanagement, hoher Systemleistung und interner Auftragskonsolidierung ermöglichen eine Skalierung der Lagerkapazität unabhängig von der Durchsatzkapazität.

Vorteile im Einsatz Autonomer Mobiler Roboter (AMR)

Simples Engineering durch Standardisierung!

- Definition der nach Anwendung mit
 - Durchsatz
 - Kapazität
 - Dimensionen
- Kurze Planungszeiten durch vorkonfigurierte Komponenten

Kurze Lieferzeiten und Inbetriebnahmephasen!

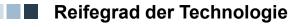
- Signifikant schnellere Verfügbarkeit automatisierter Systeme durch auftragsneutrale Fertigung
- Einfache Installation durch vorgefertigte Module und Software
- Risikominimierung

Geringere Investitionen durch Einsatz der Roboter nach Bedarf!

- Technologieeinsatz bei tatsächlichem Wachstum
- Ermöglicht Skalierbarkeit und Austauschbarkeit
- Automatisierung, wo sinnvoll

Der individuelle Grad maximaler Automatisierung

Alleinstellungsmerkmal / USP


Die Basis eines erfolgreichen Logistikbetriebs ist ein durchdachtes Konzept, das sowohl das Kernprodukt als auch das Kundenversprechen des Unternehmens optimal unterstützt.

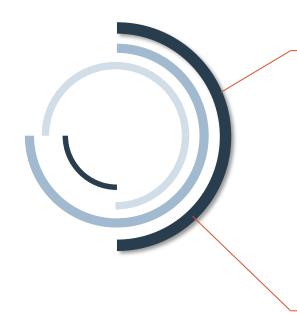
Optimale Logistikstruktur

Logistik unterstützt und ermöglicht die zentralen Kundenversprechen eines Unternehmens. Kundenversprechen prägen den allgemeinen Designansatz signifikant.

Individueller Automatisierungsgrad

Modernste roboterbasierte Technologien decken einen oder mehrere Prozessschritte individueller Logistikkonfigurationen ab. Der Automatisierungsgrad hängt von der Verfügbarkeit ausgereifter Technologien für den gesamten Prozess ab.

Bestehende Technologien können für eine Anwendung ausreichend entwickelt sein, für andere jedoch unzureichend


Prozessabdeckung

Die Effizienz des Logistiksystems steigt, wenn Technologien mehrere Anwendungen im Prozess beherrschen und konsolidieren

Anpassung an das Kundenprodukt

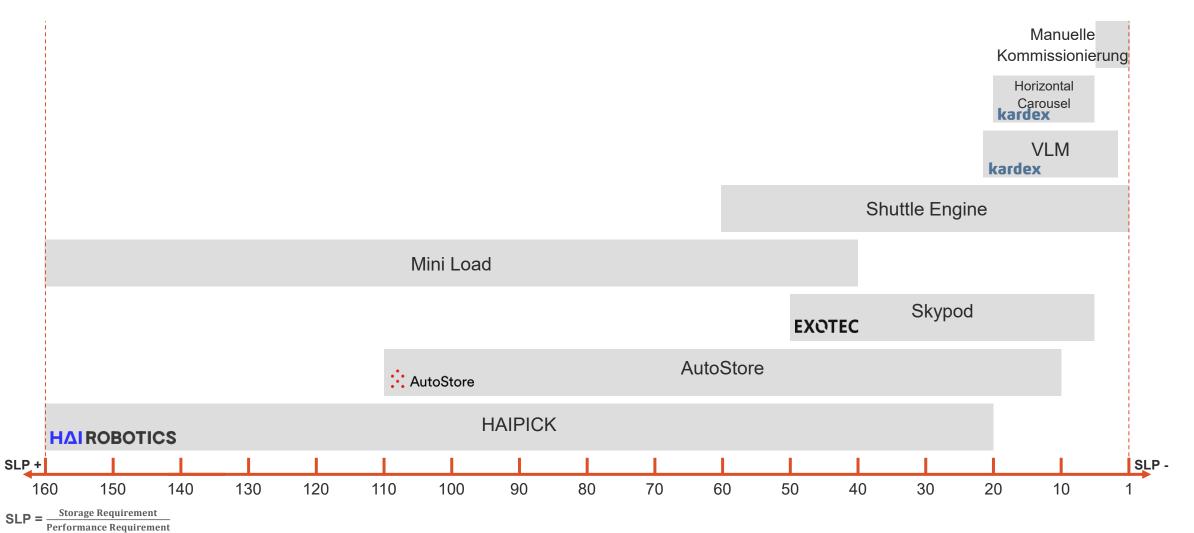

Konfiguration vs. Auswahl

Roboterbasierte Automatisierungstechnologie bietet ein flexibles Verhältnis zwischen dynamischer (Anzahl der Roboter) und statischer Kapazität. Sie passt sich an veränderte Anforderungen aufgrund wechselnder Kundenwünsche an. => Ständige Anpassung an Kundenwünsche

Prozesskonsolidierung vs. Prozessspezialisierung

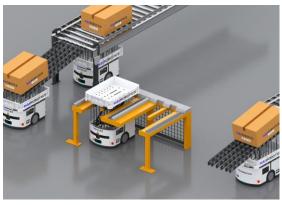
Roboterbasierte Automatisierungstechnologien ermöglichen die Kombination verschiedener Technologien. Ein automatisiertes Lager- und Bereitstellungssystem in Verbindung mit einem Kommissionier-Roboter konsolidiert Lagerung und Bereitstellung. Die Komplexität verlagert sich von der Hardware auf die Software, wodurch die Hardware-Investitionen reduzieren, und die Anlaufzeit verkürzt werden.

Änderung der Gestaltungsprinzipien


Schwerpunkt Flexibilität

Durch die Übergabe der Lagerbewegung an flexible Roboterflotten verlagert sich der Schwerpunkt der Konstruktion von komplexen Fördertechnikanlagen hin zur Bereitstellung von Stell- und Bewegungsflächen. OPEX- vs. CAPEX-Modelle für Roboterflotten vermeiden Nutzungsrisiken. Die Verteilung der verfügbaren Flächen verändert sich zugunsten der eigentlichen Fulfillment-Stationen, wodurch die Produktqualität gesteigert wird.

Schwerpunkt Technologie


Allgemeine Schnittstellen-Standards und die Standardisierung von Technologien unterstützen die Koordination kombinierter Flotten. KI-Modelle übernehmen zunehmend die Steuerung komplexer Vorgänge und nutzen die neuen Freiheitsgrade im Aufbau.

Breites Anwendungsspektrum bestehender Systeme

Flexibilität im Grad der Automatisierung

Beispiel HAIROBOTICS

Roboter und ihr Einsatz in der Intralogistik

Transport-Roboter

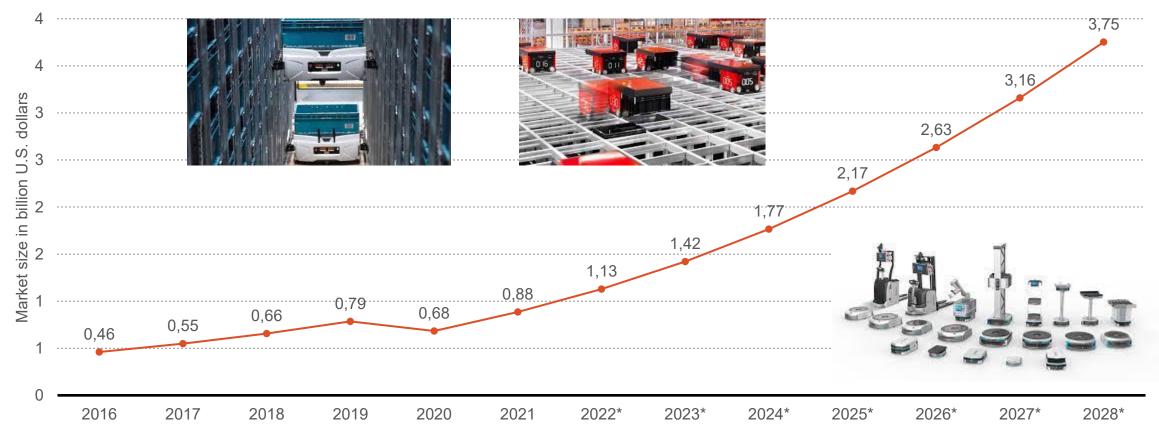
Ersatz für klassische Fördertechnik oder Gabelstapler

Palettierung/ Depalettierung

Flexible Zellenkonzepte

GTP-Roboter

Erfolgsgeschichte der letzten 5 Jahre



Picking-Roboter

Zukunft in sinnvoller Kombination von Prozessen

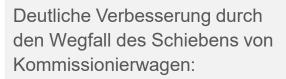
Größe des europäischen Marktes für autonome mobile Roboter (AMR) von 2016 bis 2021, mit einer Prognose bis 2028 (in Milliarden US-Dollar)

Note(s): Europe; 2016 to 2021

Further information regarding this statistic can be found on page 8.

Source(s): Inkwood Research; ID 1285864

Vergleich von Multi-Order-Picking: Manuelle vs. AMR-Lösung



Minimierung der Betriebswege der Mitarbeiter:

 Mitarbeiter zu Roboter, nicht Mitarbeiter mit Kommissionierwagen

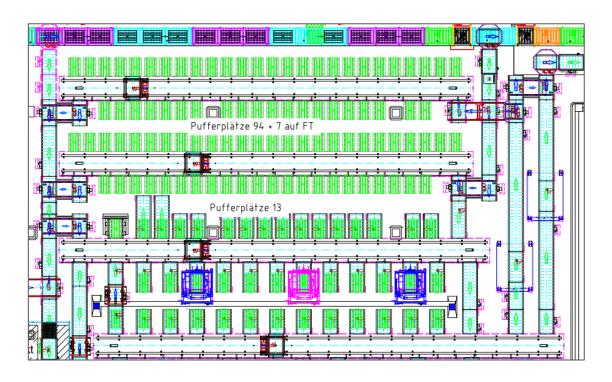
Ergonomie

 Deutlich reduzierte körperliche Belastung

Kosten/Investition

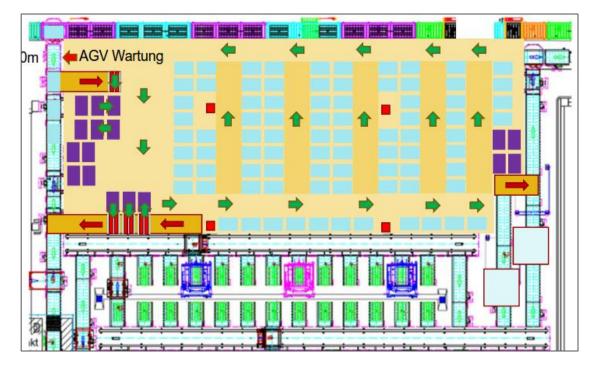
- Ausrüstung für die Grundlast
- Hinzufügen von Robotern zu Spitzenzeiten

Planung + Implementierung

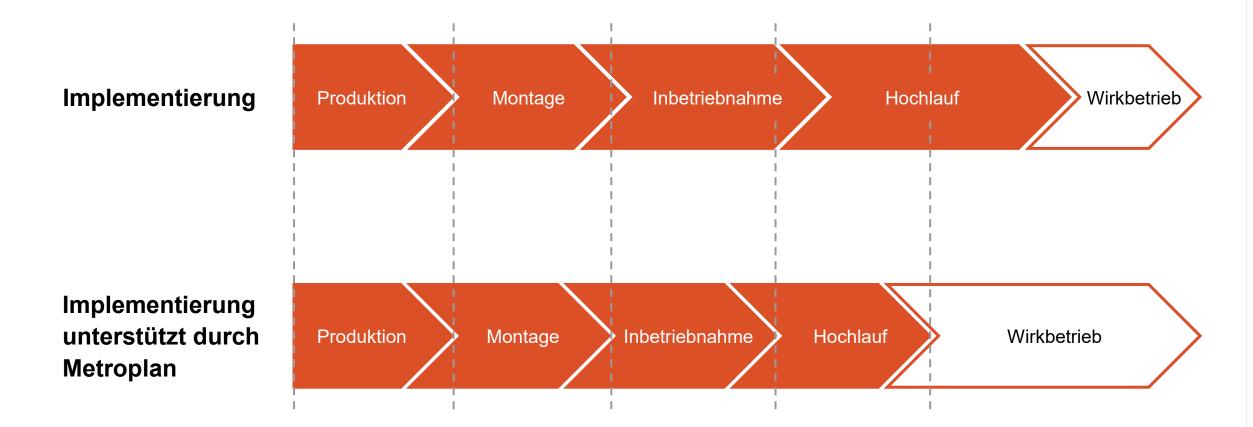

Hohe Verantwortung des Herstellers für das System:

- KPI-basiert; Analyse erforderlich
- Evtl. Simulation erforderlich
- Schnelle Implementierung möglich (3-6 Monate)

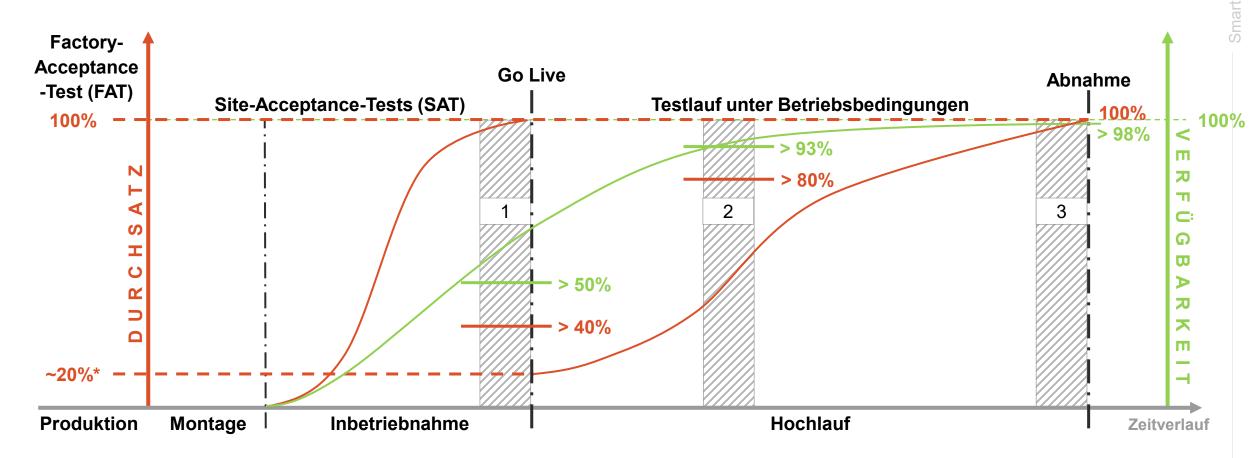
Einzelkartonkommissionierung mit Unterstützung von Transportrobotern | Vergleich


Konzept mit Fördertechnik

- Pufferung durch Einsatz von Transportwagen mit statischen Pufferplätzen
- Anbindung über Transferstationen an die Lagerbereiche



Konzept mit Transportroboter


- Pufferung nach dem Blockspeicherprinzip
- Transport und Bereitstellung der Paletten mit Robotern

Effizienzgewinnung durch strukturierte Implementierung

Ein mehrstufiges Testverfahren gewährleitet ein leistungsstarkes System | Beispiel

- 1. Nachweis der Leistungsfähigkeit und Verfügbarkeit vor Beginn des Probebetriebs (Massentest)
- 2. Frühzeitiger Nachweis der Leistungsfähigkeit und Verfügbarkeit
- 3. Endgültiger Nachweis der Leistungsfähigkeit und Verfügbarkeit

*Abhängig von Vereinbarung mit dem Kunden

Bewährte Prinzipien für Ihren Projekterfolg

Datenerprobtes Logistikdesign

Materialflussorientiertes Layout

Automatisierung und IT-Schnittstellen

Operational Excellence

Zukunftssicherer und skalierbarer Betrieb

Vielen Dank!

Besuchen Sie uns an Stand H1 - F3

